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Boolean network models of strongly connected modules are capable of capturing the high regulatory com-
plexity of many biological gene regulatory circuits. We study numerically the previously introduced basin
entropy, a parameter for the dynamical uncertainty or information storage capacity of a network as well as the
average transient time in random relevant components as a function of their connectivity. We also demonstrate
that basin entropy can be estimated from time-series data and is therefore also applicable to nondeterministic
networks models.
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I. INTRODUCTION

Random Boolean networks are often studied as generic
models of gene regulatory networks �1,2�. The ensemble ap-
proach to gene regulation, a term coined by Kauffman, aims
at studying well-defined ensembles of model networks, the
statistical features of which match those of real cells and
organisms �3�. Ensembles of special biological interest are
critical random Boolean networks, which lie at the boundary
between a frozen and a chaotic phase �4–6�. In the frozen
phase, a perturbation to one node propagates on average to
less than one other node during one time step. In the chaotic
phase, the difference between two almost identical states in-
creases exponentially fast, since a perturbation propagates on
average to more than one node during one time step �7�.
Critical Boolean networks balance robustness against pertur-
bations with complex asymptotic attractor dynamics.

Since Boolean networks are deterministic systems, they
eventually settle into periodic attractors. Regarding the be-
havior in this asymptotic limit, nodes can be classified into
three groups. Nodes that are frozen to the same value on
every attractor form the frozen core of a network �8�. These
nodes give a constant input to other nodes and are otherwise
irrelevant. Nodes that are not frozen but have no outputs, or
only outputs to other irrelevant nodes, are also classified as
irrelevant. Although they might fluctuate, they do not influ-
ence the number and periods of attractors. Finally, the rel-
evant nodes are those nonfrozen nodes that influence their
own state over directed loops. The recognition of the relevant
nodes as the only elements influencing the asymptotic dy-
namics was an important step in understanding the dynamics
of Boolean networks �9,10�.

In a biological context, an attractor is associated with a
characteristic dynamically stable pattern of gene expression,
which may represent a particular fate of the cell. The weight
of each such attractor can be defined as the probability for a
random state in the state space of the network to flow into
this attractor. Based on the state space partition into attrac-
tors of different weights, we recently introduced a network
parameter, called the basin entropy �hereafter, simply en-
tropy�, which measures the uncertainty of the future behavior
of a random state. This entropy was shown to increase with

system size in critical network ensembles, whereas for en-
sembles in the ordered phase and in highly chaotic networks,
it approaches a finite value �11�. From an informational pro-
cessing perspective, this means that the complexity of a net-
work increases only with its system size if it operates near
the critical regime.

An intuitive understanding of this growing complexity are
networks whose relevant nodes are modularly organized and
whose complexity increases if new modules accumulate. In
living systems, transcriptional regulation is often highly
modular �12,13�. Of special interest are complex relevant
components, which consist of relevant nodes containing
more than one relevant input or output �14�. Boolean net-
work models for several biological gene regulatory circuits
have been constructed and were shown to reproduce experi-
mentally observed results �15–18�. These often highly con-
nected subnetworks can be viewed as biological examples of
such complex relevant components.

In this work, we first numerically study the entropy of
complex relevant components as a function of their connec-
tivity. We show that the probability of such a component to
freeze increases with growing connectivity and that its en-
tropy decreases. Additionally, we also study the average tran-
sient time of a random state until it falls into its attractor. The
calculation of dynamic network parameters, such as the basin
entropy, requires the knowledge of the underlying network
functions. This often limits the applicability of such param-
eters. We demonstrate that the entropy of a network can also
be estimated from time series data by the application of clus-
tering techniques. This broadens the applicability of this dy-
namic network parameter to models whose functions are not
necessarily known or that are not deterministic. In order to
illustrate our results, we will use a Boolean network model
for the mammalian cell cycle as presented in �16�.

II. BOOLEAN NETWORKS

In a Boolean network every gene is identified by a node i,
whose state xi� �0,1� indicates whether the gene is switched
on or off. Each node i receives input from ki other nodes and
its state at the next time step t+1 is a Boolean function f i of
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the states of the nodes it is depending on xi�t+1�
= f i(xi1

�t� , . . . ,xiki
�t�). A network is entirely defined by its di-

rected connectivity graph G and the Boolean functions F
= �f1 , . . . , fn� assigned to every node. The state of a network
x�t�= (x1�t� , . . . ,xn�t�) contains the values of all n nodes in
the network at a given time point t. A Boolean network thus
defines a deterministic transition matrix T on its state space.
A random state x� �0,1�n that is propagated through the
network as

x�t + 1� = F„x�t�… �1�

generates a time series or trajectory through the state space
that finally intersects with itself. The states that are then re-
visited infinitely often define the attractor �, with the number
of states on the attractor equal to l���, also called the attrac-
tor size. Transient states that lead into an attractor form its
basin of attraction. The sum of all attractor states and basin
states of a certain attractor normalized by the size of the
entire state space �2n� define the weight w� of that attractor.
The weight of an attractor is the probability that a randomly
chosen state will flow into this very attractor. The entropy h
of the probability distribution defined by w� is called the
basin entropy:

h = − �
�

w� ln w�. �2�

This measure captures the uncertainty of the future dynamic
behavior of the system started in a random state. The scaling
of this parameter relative to system size was discussed in
�11� for ensembles of different dynamical regimes.

The sensitivity of a node i specifies the number of its
input arguments that, when toggled, will result in a flip in the
value of that node, averaged over all input combinations. A
Boolean function f i with ki input variables that takes on the
value 1 for any one of its possible 2ki input vectors with
probability pi has the expected sensitivity �19�:

si = 2kipi�1 − pi� . �3�

The network sensitivity s is the average sensitivity of all its
nodes and indicates to how many nodes a perturbation to a
single node is, on average, propagated. The network sensi-
tivity is an order parameter of a network ensemble that di-
vides random Boolean networks with an expected sensitivity
of s�1 into the ordered phase and with s�1 into the chaotic
phase. Random networks that propagate a perturbation, on
average, to one other node �s=1�, are called critical. Classi-
cal Kauffman networks with a fixed in degree k=2 and p
=0.5 are prototypes of critical Boolean network ensembles,
though it should be noted that this definition of criticality is
independent of the actual in degree distribution.

The attractor dynamics of a Boolean network are entirely
determined by its relevant nodes. The scaling of these nodes
was first discussed in �20� and derived for a general class of
critical network ensembles by Drossel, Kaufman, and Mihal-
jev �21,22�. They presented a stochastic process that removes
frozen nodes and nonfrozen irrelevant nodes from a network
and ends when there are only potentially relevant nodes left.
We call these nodes “potentially relevant,” as some of them

may be part of self-freezing loops. We will discuss this phe-
nomenon below in more detail. The number of these poten-
tially relevant nodes nr scales in all critical networks of size
n and average connectivity k�1 as nr�n1/3. In the limit of
large n, almost all these relevant nodes depend on only one
relevant node; the proportion of relevant nodes depending on
more than one relevant input approaches zero; and the num-
ber of nodes depending on more than two relevant inputs is
almost surely zero. These results agree with structural find-
ings of random graphs at the point of phase transition, where
the number of nodes in complex components scales with n1/3

and each such complex component is almost surely topologi-
cally equivalent to a three-regular multigraph �23�.

III. RANDOM COMPLEX RELEVANT COMPONENTS

A set of relevant nodes that eventually influence each oth-
er’s state form a relevant component. We define the excess e
of the connection digraph of a component in analogy to the
graph theoretic terminology as the difference between the
number of arrows a between the nodes and the number of
nodes n:

e = a − n . �4�

The topology of the simplest relevant component is a loop of
nodes. The excess of this component is e=0. If we randomly
add a different link to this loop we have an intersected loop
of the same size with excess e=1. One node now depends on
two nodes and one node influences two nodes.1

By randomly adding further edges, we may generate com-
ponents of arbitrary excess �see Fig. 1�.

In a simple relevant loop only the Boolean “copy” (xi�t
+1�=xj�t�) and “negation” (xi�t+1�=xj�t�) functions can be
used. A perturbation in a loop node is always propagated to a
single successor node and therefore such components have
sensitivity s=1. If another edge is added, the Boolean func-
tion of the node receiving input from two relevant inputs has
to be changed. Generally, whenever the in degree of a node
increases from k to k+1 variables, a new Boolean updating
function for k+1 variables has to be assigned. By adjusting
the bias p �see Eq. �3��, we can randomly generate a Boolean
function of k+1 variables so that its expected sensitivity is
E�s�=1. If any of the k+1 variables happen to be fictitious
�i.e., toggling their value has no effect on the output�, we can
draw again in order to guarantee that all added edges are

1In the Boolean network literature only relevant components with
an excess e�0 are called complex components. This might cause
confusion for readers familiar with the graph theoretic terminology,
where a component is called complex if its excess is e�0.

FIG. 1. Random complex component of excess e=0, 1 , 6
from left to right.
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irreducible. This process thus generates random components
of arbitrary excess, operating in the critical or slightly su-
pracritical regime.

IV. ENTROPY OF RELEVANT COMPONENTS

The only relevant component whose entropy we can dis-
cuss analytically is the simple loop. In simple loops all states
are attractor states and it is therefore sufficient to know the
length l��� of an attractor in order to determine its weight,
w�= l��� /2n. Regarding the attractor dynamics, we can sub-
stitute an even number of “negation” functions in a loop by
“copy” functions, so that it is sufficient to discuss loops with
an even number or an odd number of “negations.” In even
loops, the attractor states that only differ by a rotation of
their values belong to the same attractor and attractors can
therefore be viewed as an equivalence class under rotation.
In combinatorics such an equivalence class is also known as
a binary necklace of length n. The number of attractors of a
simple even loop is calculated as follows �24�:

NA
even�n� =

1

n
�
	d	n

�
n

d
�2d, �5�

where ��m� is Euler’s totient function, which is defined as
the number of positive integers �m that are relatively prime
to m �i.e., do not contain any factor in common with m�. The
sum is taken over all dividers of n. If n is prime, the number
of attractors of length n is simply �2n−2� /n.

In odd loops, a state x and its negation x are always part
of the same attractor and the number of attractors can be
calculated with the formula

NA
odd�n� =� 1

2n�	d	n ��n/d�2d + 3
42n/2, if n is even,

1
2n�	d	n ��n/d�2d + 2n−1/2, if n is odd.


�6�

For n prime, the number of attractors of length 2n is �2n

−1� /2n. For large even �odd� loops, most attractors are of
length n �2n� and the entropy can be approximated by con-
sidering only those attractors that are of maximal weight:
h�n��n ln 2−O�ln n�. Therefore, the entropy of simple
loops scales linearly with its size under synchronous updat-
ing.

In terms of the entropy, the key difference between com-
plex components with excess e�1 compared to simple loops
is that the attractor length and weight are no longer corre-
lated. In complex components, attractors of length one may
have even higher weights than larger attractors in the same
network. The mean number and length of attractors of a ran-
dom component are insufficient in describing its dynamic
complexity and we choose to study the entropy as a function
of increasing excess.2

When we start increasing the excess of our component
from e=0, two qualitatively different things may happen:
Either all nodes stay relevant and only the attractor dynamics
change, or parts of the component or perhaps even the entire
component freezes. This special case of self-freezing loops
was first discussed in �26�. The simplest case of a self-
freezing component are two nodes that canalize each other to
their majority bits, e.g., f1=x1∨x2 and f2=x1∨x2. Such com-
ponents are clearly not relevant components, but part of the
frozen core of a network. In Fig. 2 the probability that a
critical component of n=10 nodes freezes is shown for in-
creasing excess e. The average was taken over more than
26 000 network instances for every excess e. We obtained
the same qualitative progress for component sizes up to n
=18:3 The addition of the first few edges to a loop strongly
increases the probability to freeze, whereas the probability to
freeze increases slower in components of already high ex-
cess.

If a component becomes frozen, or only has a single at-
tractor, it has entropy h=0 and we will not consider it as a
relevant component. Figure 3 shows the decline in the aver-
age entropy �h� of the relevant n=10 node components as a
function of their excess. The entropy drops sharply for the
first few additional edges and decreases slower for e�10.
For all studied component sizes n up to 18, the average en-
tropy falls below 1 for e=10 and continues to decrease
slower thereafter.

As soon as additional edges are introduced into the loop,
the average number of attractor states drops substantially and
the majority of states become transient states. The average
number of steps that are required to reach an attractor from a
random state in the state space is defined as the average
transient time ��� of a network. In a simple loop, where all
states are attractor states, the transient time is zero. If we
increase the excess, the transient time first sharply increases,
peaks around an excess of e=2, ���n=10

max �e=3�=10, and be-
gins to decrease thereafter as shown in Fig. 4. We obtain

2For a thorough and mainly analytical discussion of the mean
number and length of attractors in relevant components of excess
e=1, see �25�.

3The computational time to calculate the entropy increases expo-
nentially with system size. We therefore chose larger increments for
the excess in larger components: n=12,14,16,18, e
=1,2 , . . . ,10,15,20, . . . ,90. Over 2000 network instances have
been simulated for every ensemble.
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FIG. 2. The probability of a n=10 node component to freeze
increases roughly logarithmically with increasing excess e.
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qualitatively the same behavior for the transient time in com-
ponents of sizes up to n=18 ����n=18

max �e=3��28 and
���n=18�e=100��3�.

We also studied the average transient time as a function of
the average sensitivity �Fig. 5�. The average transient time
starts to grow rapidly, soon after the ensembles enter the
chaotic regime �s�1� and scales with the system size in
highly chaotic networks.

Compared to the average transient times in networks of
higher sensitivity s, even the maximal transient times in the
critical relevant components �Fig. 4� are small. The updating
functions of nodes of the critical component that depend on
more than one relevant input are more likely to be
canalizing4 because of the stronger bias p that was used in
their generation process �27�. Canalizing functions are found
frequently as control rules governing the transcription in eu-
karyotic genes �28�. Dynamic properties of random Boolean
networks with canalizing functions have also been studied in
�1,26�. A higher proportion of canalizing functions leads
characteristically to short attractors and more robust dynam-
ics.

V. BOOLEAN NETWORKS MODELING BIOLOGICAL
CIRCUITS

As a showcase model for a biological gene regulatory
circuit, we now analyze the Boolean network of the mamma-
lian cell cycle as presented in �16�. This n=10 node network
simulates the states of cell cycle genes that regulate the pro-
cess of cell division and its quiescent G0 phase. It can be
viewed as a biological example of a complex relevant com-
ponent of highly connected nodes �for a more thorough bio-
logical discussion, see �16��. The Boolean functions and at-
tractor states of this network are shown in the tables below.
The value on the left-hand side of the equations corresponds
to the value at time t+1, xi�t+1�= f(xi1

�t� , . . . ,xiki
�t�), with

the symbols + and · representing the OR and AND opera-
tions, respectively:

Gene Boolean function

CycD x1=x1

Rb x2= �x4x5+x6�x1x10

E2F x3= �x5+x6�x2x10

CycE x4=x3x2

CycA x5= �x3+x5��x5+x8�x2x7

p27 x6= �x4x5+x6x4+x6x5�x1x10

Cdc20 x7=x10

Cdh1 x8=x5x10+x7+x6x10

UbcH10 x9=x8+x8x9�x7+x6+x10�
CycB x10=x7x8

Attractors

G0 Cell cycle

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1

0 0 1 1 1 0 0 1

1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

1 1 0 0 0 1 1 1

0 1 1 1 0 1 0 0

0 0 1 1 0 0 0 0

The attractor of length seven represents the different steps of
the cell cycle phases, G1, S, G2, and M, whereas the fixed
point attractor represents the G0 phase. Both attractors have
the same weight w=0.5, which yields an entropy of h=ln 2
�0.69. If we average over the sensitivities of the single
nodes, we obtain a network sensitivity of s=1.04 which lies
in the range of the expected average sensitivity for a relevant
component of a critical network. The average transient time
of this network is ���=4.8, which is on the order of a random
relevant component with the same excess �e=24�.

So far, other detailed deterministic Boolean models have
only been presented for a few other gene regulatory circuits.

4A function is canalizing for the value �i= �0,1� of variable i if
this value can determine the function value regardless of the values
of the other input variables.
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FIG. 3. Average entropy �h� of a complex relevant component
with increasing excess e.
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FIG. 4. The average transient time decreases after a peak around
e�2 with increasing excess.
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A prominent example among those is a model for the seg-
ment polarity gene network, which governs the embryonic
pattern formation during certain stages of the developmental
process in the fruit fly Drosophila melanogaster �17�. This
Boolean network models the interaction between eleven
genes and its products and defines certain fixed-point �single-
state� attractors that can be identified as stable gene expres-
sion patterns in wild-type embryos. For this model, we also
find the dynamic network parameters to lie within the range
of critical complex components: For the network sensitivity
we obtain s=1.02, the entropy is h=2.17, and the transient
time ���=3.6.

Generally, the identification of a single deterministic logi-
cal function for a gene is often difficult for experimental
reasons �18�, or determinism might not even be a desired
feature of the modeling approach itself. For example, proba-
bilistic Boolean networks consider more than just one Bool-
ean function as possible updating rules for a gene �29�. Also,
asynchronous updating schemes lead to nondeterministic dy-
namics �30�. We therefore conclude with a section in which
we sketch an approach that enables us to extend the concept
of basin entropy to nondeterministic models.

VI. ENTROPY ESTIMATED FROM TIME-SERIES DATA

In an unperturbed Boolean network a trajectory that
started from a random point in the state space will finally be
caught in a single attractor. If we allow small random pertur-
bations in the updating procedure, the trajectory will jump
out of its attractor from time to time and may settle in an-
other attractor. The deterministic dynamics of the unper-
turbed network give way to a stochastic �and ergodic� Mar-
kov process with transition probabilities pij = P�	xt= j	xt−1

= i�, such that � j=1
2n

pij =1 �31�. The transition probabilities can
be arranged in an ordered fashion in a stochastic state tran-
sition matrix,

P = �p11 p12 ¯

p21 p22 ¯

� � �

� . �7�

Let 	�0� be the vector of initial state probabilities at time t
=0. We may calculate the state probability distribution 	�m�
after m steps:

	�m� = 	�0�Pm. �8�

We may further sum up the probabilities of states, leading to
the same attractor, to get a probability distribution 
m for the
attractors after m time steps. The steady-state probabilities
�m→�� for attractors in Boolean networks with perturba-
tions were studied in �32�.

Let us consider the following two-node network defined
by the Boolean functions x1�t+1�=x1�t�+x2�t� and x2�t+1�
=x1�t�x2�t�+x1�t�x2�t� to illustrate the difference between the
weight distribution of the deterministic case and the attractor
probability distribution in the perturbed case. When we use a
perturbation probability of q=Prob�xi→xi�=0.1 for switch-
ing the value of a node after calculating the successor of a
state, the deterministic transition matrix

T =�
1 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0
�

is replaced by the stochastic transition matrix

P =�
0.81 0.09 0.09 0.01

0.01 0.09 0.09 0.81

0.01 0.09 0.09 0.81

0.09 0.01 0.81 0.09
� ,

where the states along the rows and columns are arranged in
the usual lexicographic order �00, 01, 10, 11�.

This Boolean network divides its state space into two dif-
ferent basins of attraction: The first one consists of its fixed
point attractor �00� while the second one contains the tran-
sient state �01� that is flowing into the attractor �10�� �11�.
Thus the weight distribution is w1=0.25 and w2=0.75. If we
solve the steady state equation 	=	P, we obtain 	�00�
=0.201, 	�01�=0.0598, 	�10�=0.3618, and 	�11�=0.3775. We
may sum up the probabilities of states contributing to the
same attractor basin to get a probability distribution � of the
basins, v1=0.201 and v2=0.799. If the history of a trajectory
is unknown, this distribution describes the probability of the
network operating in a certain basin. It can be estimated with
arbitrary precision by sampling the states of a time series.
The perturbation probability q clearly affects �; for large q,
the network rules �connections, updating functions� lose their
importance, and the time series become random.

For our described two-node example network, the basin
weight distribution w and the basin probability distribution �
differ. We therefore studied how increasing network size af-
fects the average deviation,

� =
1

	�	
���

�w� − ���2 �9�

between the basin probability distribution � and the weight
distribution w in different network ensembles. In Fig. 6�a�
the behavior of � is shown when increasingly long time se-
ries with q=0.01 are used to estimate the basin probability
distribution of critical n=10 network ensembles. Figure 6�b�
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FIG. 5. Average transient time ��� in random network en-
sembles of increasing sensitivity s.
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shows that the mean deviation � decreases for increasing
network sizes �q=0.01 and m=10 000�. Therefore, especially
in larger networks, the basin weight distribution may be well
estimated by the basin probability distribution. For all net-
work ensembles the average was taken over more than
10 000 network instances.

The assignment of a state in the time series to its attractor,
if the underlying network rules are unknown, is a challeng-
ing classification problem. Two states occurring in the time
series with comparable frequency may either belong to the
same attractor or to two different attractors that just happen
to have a similar weight or probability. In order to solve this
problem, we have to make a second assumption: States that
belong to the same attractor are more likely to occur in tem-
poral proximity. Instead of looking at a single state, we con-
sider all states in a time window of a certain length . The
size of the time window  generally has to be estimated from
the time series data �33�. In a perturbed trajectory, generated
from a Boolean network,  should be on the order of the
expected attractor lengths. In a model based on a biological
circuit, the choice for the expected length may also be moti-
vated by “biological intuition.”

The classification of these time profiles into several attrac-
tors is a clustering problem, where the number of clusters is
not known. Many algorithms to estimate the optimal number
of clusters in a data set have been developed and extensively
studied. Generally, more free parameters �clusters� enable
one to further minimize the error function on which the clus-
ter algorithm is based. This better “fit” is then penalized by a
term growing with the number of free parameters. Based on
this tradeoff criterion, an “optimal” clustering model can be
found. When dealing with biological data, a range for the
number of expected clusters �e.g., different cell states� can
also be provided by the experimentalist. It is not our inten-
tion here to discuss the challenges of clustering and we refer
the interested reader to the extensive literature in this field
�34–36�. However, for illustrational purposes, we sketch the
analysis of the already introduced network of the mammalian
cell cycle by a perturbed time series and clustering.

We generated a time series of m=10 000 successor states
from the Boolean model of the mammalian cell cycle. The
value of every node was flipped with probability q=0.01
after calculating the successor state. Profiles were generated

by adding up the values of a node during the time window :

ci�t� = �
t�=t−

t

xi�t�� , �10�

with ci� �0, . . . ,+1�. Different values of  have been
tested: =4, . . . ,10. The distance between two profiles c
= �c1 , . . . ,cn� and c�= �c1� , . . . ,cn�� was measured by the city
block �L1� distance:

d�c,c�� = �
i=1

n

	ci − ci�	 . �11�

The profiles were then clustered by the k-means algorithm
�35�. In order to determine the optimal number of clusters,
the Bayesian information criterion �BIC� and Akaike infor-
mation criterion �AIC� have been used and yielded an opti-
mal number of two clusters for all used . This correctly
corresponds to the two attractors of the underlying Boolean
network: The fixed-point attractor of the G0 phase and the
attractor of length seven of the cell cycle. The classification
of the time series into two attractors yields a probability dis-
tribution 
, whose entropy h=0.691 is close to the “true”
network’s entropy, h� ln 2. This example demonstrates how
the attractors and their weight distribution, a dynamical prop-
erty of the network, can be derived from a time series using
a straightforward clustering approach that does not require
knowledge about the underlying network rules.

VII. DISCUSSION

We studied the average entropy and transient time of ran-
dom complex relevant components near criticality as a func-
tion of their excess. This was motivated in part by new ana-
lytical results on the degree distribution of relevant nodes in
critical network ensembles �22�. In random graphs of such
given degree distributions, most nodes are organized with
high probability as a single giant component �37,38�. The
regulatory elements in gene networks, on the other hand,
seem to be organized in a more modular manner �12,13�.
This raises the question of whether �ordinary� critical ran-
dom Boolean networks that have been successfully used as
models for the study of gene regulatory dynamics still lack
characteristic properties of their biological archetypes.

When we consider, for example, the excess of a network
as a fixed constraint, a modular organization of the interact-
ing nodes will yield a higher basin entropy and a shorter
average transient time.5 One might ask if a maximization of
the basin entropy or a minimization of the transient time are
desirable features in biological networks. A short transient
time might, for instance, speed up the process of settling
down to a certain cellular state �corresponding to an attrac-

5A critical relevant component of n=10 nodes and excess e=10
has an average entropy of �h��0.6. If two such components with a
combined entropy of �h��1.2 merge into an n=20 node component
of excess e=20 and are randomly rewired, the entropy decreases to
an average value of �h��0.7. The average transient time, on the
other hand, increases from ��5.5 to ��12.
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tor� whereas a high entropy would minimize the number of
genes required to perform a classification or decision task.
Thus the ability to rapidly respond to environmental cues by
switching to a particular functional cellular state as well as
the economy with which cellular information processing and
decision-making can be carried out may be evolutionarily
selected features of biological networks.

With the declining costs of microarray and other high-
throughput technologies, time series data will be increasingly
available from biological experiments, enabling network pa-
rameters such as basin entropy and transient time to be stud-
ied in a biological context. Our approach to estimate entropy

from time series data sketches one possible way how that
might be accomplished.
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